05 进阶—机器学习 经过前面的学习,你基本上已经能够进行简单的数据分析,并且能够较为完善地操作一些简单的数据了。那么机器学习这部分一定是提升你整个思维方式和数据分析水平的杀器。你将会有目的地去选择合适的方法应用在不同的场景,分析水平得以提升。 《机器学习》 周志航 著 简明而深刻,厚积薄发的评注非常开拓思维,多是游刃有余之后才可得出的见解。这确实是机器学习里优秀的中文书籍了,大牛周志航将机器学习中的模型方法,应用场景、理论推导、优化过程、算法等进行了全面而细致的讲解,堆积初级的宏观学习机器学习分析方法可以说是既简洁而又实用。 《机器学习实战》 Peter Harrington 著 李锐 李鹏 等 译 用人话把复杂难懂的机器学习算法解释清楚了,其中有零星的数学公式,但是是以解释清楚为目的的。而且有Python代码,大赞!这本书会让你意识到那些被吹捧得出神入化的分类算法,竟然实现起来如此简单;那些看是高深的数学理论,其实一句话就能道明其本质;一切复杂的事物,出发点都是非常简单的想法。 《集体智慧编程》 TOBY SEGARAN著 莫映 王开福 译 以机器学习与计算统计为主题背景,述如何挖掘和分析Web上的数据和资源,如何分析用户体验、市场营销、个人品味等诸多信息,并得出有用的结论。想把 paper 上的公式转变为可以运行的代码,这是件考验功力的事情这本书就是是修炼此种功力的武林秘笈之一。 最显著的特点是,实战性极强! 针对每个算法,他从头到尾演示了一个完整的实现过程:从获取数据,组织存储,到算法实现,加载运算,再到最后的结果的分析利用。 06 补充—数据库技术 在涉及到大量的数据之后,数据的存储可能会成为你要考虑的问题,所以关于SQL方面的知识作为一个数据分析师应该有所储备。好在这部分难度并不是很大,并且不要要特别深入的研究。 《深入浅出SQL》 贝里 著 O‘Reilly Taiwan公司 译 非常浅显易懂, 图表间的注释是本书精华所在. 细致到几近啰嗦,小白都可以轻松看懂,可能是因为数据库技术本身难度并不是特别大。作为入门的书相当的不错,有辅助理解的讲解和例子,同时有有练习题加深记忆。当然书的内容略多,如果你是需要快速学习的话,在你已经理解之后就不必过度扣细节,毕竟你可能需要更多在实战中应用。 《高性能MySQL》 Baron Schwartz 等 著 王小东 李军 康建勋 译 不可多得的分享MySQL实用经验的图书。它不但可以帮助MySQL初学者提高使用技巧,更为有经验的MySQL DBA指出了开发高性能MySQL应用的途径。经典自不必说,对于大多数的涉及数据存储的人来说,这都是一本好书。书中的知识点非常全面,但可能学习成本略高,并非全要掌握,作为遇到困难时的词典查阅也不错。 07 应用—商业问题处理 这个时候你应该把学到的数据分析技能应用到实践中去了,去处理实际商业模型中的问题,解决企业在运营过程中数据驱动问题,这个时候,相信你已经打开数据分析的大门,你可以拥有一份收入可观、并且学之所用的工作了。 《精益数据分析》 Alistair Croll 等 著 韩知白 王鹤达 译 这本书里讲解了创业公司该如何确定指标体系,如何用数据指导产品和运营。本书还针对电商、媒体、SaaS、双边市场、UGC等,列举了要关注的指标,并有丰富的案例。整个书的内容比较散,但依旧是讲互联网产品数据分析方面非常好的书了,对于想就职互联网数据分析的人来说非常实用。 08 如何学习 可能你看到那么多书就头大,但是总结下来你需要掌握的无非以下几个技能: 统计学基础 1.常用模型理论 2.编程语言(如PYTHON) 3.机器学习方法 4.数据库技术 这些书并不需要全部涉猎,一切以掌握以上的几个技能为准。比如你之前就有统计的基础那么,统计学部分的书你就没必要看了。你也完全可以看了《深入浅出统计学》之后有感觉了就进行下一阶段的学习。 所以更重要的事情是带着学到的理论知识进入到实战的环节中去,这样才能提升你实际应用的能力,同时检验你是否真正理解和掌握了书中的方法论。关于编程语言并非一定是要python,只是因为python比较接近自然语言更容易理解和入门,并且确实强大够用,因而在此推荐。如果你对R感兴趣,这方面也有不少的经典书籍可以查阅。 独自学习的时候你肯定会遇到很多瓶颈,甚至让你开始怀疑人生,千万别气馁,带着实际的问题再次进入书籍,你会发现一些不一样的东西,对理论也会有更佳深入的了解。有时候你还需要去大牛们的paper中去寻找实际问题的答案,但是每当你解决一个问题,你就在level上要高出不少。 所以你大可不必纠结于其中的某个小问题,越快让自己有做实践的能力越好,获得成就和反馈的喜悦会让你热情大增,让你在实践中更高效地学习。 当你真正完成这些基础的学习,你会发现,原来你已经可以参加DataCastle的竞赛并且取得不错的成绩了,你将在竞赛中以更快的速度获得成长。 在成为厉害的数据分析师的路上…… 12 |