《网站分析实战》 互联网不再是网站的天下,但是移动端依旧有Web,我们在朋友圈看到的所有H5活动、第三方内容等,都是依托网页实现。网站的数据分析依旧有存在空间,网站的数据指标还是能够指导我们运营。 《数据挖掘与数据化运营实战》 这本书涉及了数据挖掘,但是比较浅,可以作为数据分析师视野的承上启下,了解数据化运营的高级应用。特点是以阿里的实际工作相结合,可又因为保密原则不够详尽。 《数据实践之美》 是各领域专家众筹完成的书本,比起传统的书籍,囊括范围更广。虽然没有深度讲解技术,但是各领域的案例都是一手资料,对业务的触类旁通理解有帮助。 业务知识我不再多推荐,以后我会通过公众号文章的形式讲解。因为从我看来,市面上也没有详尽介绍数据角度下的用户行为、产品运营的书籍,都是点到为止。这一块内容,尽量从工作中去学,收获才是最大的。 数据分析师的必读书单:Python/R
欢迎来到数据分析的最后殿堂,Python和R都是大分支,基本是前面所有内容的实现。Python的学习以PY3为前提,毕竟2017年了,我实在想不出不用Python3的理由。 除了书籍,Python/R更多依靠博客和文档学习。Python的学习路径不陡峭,新手水平取决于查询能力,所以也请学会如何高效搜索。 《深入浅出Python》 还是深入浅出系列,完全适合零基础的新人。需要注意的是,编程学习不同于其他知识,如果计算机基础不稳固,在使用中会遇到各类问题。知其然不知其所以然,这是本书缺点:能掌握,但是Bug比较多。 《Python学习手册》 对于拥有编程基础的人,这本书系无巨细的有些啰嗦,不过对新人,可以避免不必要的坑。把它当作一本工具文档吧,当遇到不理解的内容随时翻阅。这是纸质书比电子书好的优势之一。 《利用Python进行数据分析》 非新手向的书籍,成书较早,部分内容比较老旧。虽然学习中不会有问题,但很多Pandas函数已经有更优雅的写法了,例如df.query。每段代码都敲打一遍,千万行的数据清洗基本不会有大问题了。 《Python Cookbook》 Python的进阶书,如果想要掌握更好的编程能力,这是一本经典,值得时时翻阅。注意,它更偏向程序员。 《R语言实战》 R语言的入门书籍,从数据读取到各类统计函数的使用。虽然没有涉及机器学习,依靠这本书入门R是绰绰有余了。 《统计学:从数据到结论》 这本书是将R语言和统计学结合的教材,可以利用这本书再复习一遍统计知识。缺点是书本后面的内容质量不如前部分。 到这里,入门书籍推荐完毕,当然好书不嫌多,例如《数学之美》、《集体智慧编程》、《统计学习方法》等,有兴趣不妨阅读。 上面的内容都吃透,不论是成为一名数据分析师,还是往后向机器学习、数据科学家、数据产品发展、都有了良好的基础。 12 |